	USB Tethering on Android Devices
	[image:]

	
	

	2012, December
	

	
	

[bookmark: _Toc345298490]USB Tethering on Android Devices

	Author
	Florin Apetrei

	Date
	2012-10-12

	University
	Zealand Institute of Business and Technology, campus Roskilde

	Company
	Renesas Mobile Corporation

[bookmark: _Toc345298491]Abstract
In this thesis the utilization and performance of the tethering concept was analysed. To improve the performance of the Android built-in tethering application much research and parallel debugging was done. The outcome of this research can be used by any phone vendor to improve a technology before it is deployed on the final form product that will reach the mass market. Improving the performance of tethering application will allow the phone vendor to pass important certifications, which essentially means that its products will have a higher quality, which will translate into a higher profit given by that product. Tethering is a feature that more and more vendors are supporting on their platforms and it is a feature with an increasing demand, especially in high end markets like the U.S., China and India. Speaking of which, the operators in these countries are driving forward the demands from the “hungry” mass-markets.
An in-depth analysis of what happens on the L3 and L4 within the OSI model was also performed, because of the relationships that are sitting in the under-layers of the main concept.
Some other general aspects related to functionality, distribution, adaptation, testing and deployment are also discussed.
[bookmark: _Toc345298492]Preface
This thesis was made for Renesas Mobile’s EUTRAN L1 R&D Copenhagen department and contains details about my investigation done on Android, development and debugging of the Tethering concept inside an Android prototype.
This thesis is created in close cooperation with engineers in the EUTRAN L1 R&D department within Renesas Mobile Corporation site in Copenhagen, Denmark. Working with professionals helped me to better understand the underlevels of the problem.
The help and support from the specialists has been invaluable during the investigation for this thesis, as I had access to all the relevant knowledge I could ask for through these people.
[bookmark: _Toc345298493]Acknowledgements
I would like to take this opportunity and thank all the people who have helped and supported me during this period. The people helping me during this perios include both people from multiple sites within Renesas Mobile: John Mills, Patrick Darlington and Asko Ruotsalainen; and people from the outer world: Bianca Jurcan and Petru Buzdugan.
These people have helped me during my daily research upon the tethering concept.
Special thanks go also to my supervisor at Renesas Mobile, John Mills and my supervisor at ZIBAT, Roskilde, Michael Claudius for their support, understanding and advices throughout the research period.

Thank you all,
Florin

[bookmark: _Toc345298494]List of acronyms
	ASIC
	Application-Specific Integrated Circuit

	APE
	

	OSI
	

	L3
	

	L4
	

	RIL
	Radio Interface Layer

	MCL
	Master Code Line

	
	

	
	

[bookmark: _Toc345298495]List of terms
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

Table of Contents
USB TETHERING ON ANDROID DEVICES	1
Abstract	2
1.	Preface	2
Acknowledgements	2
2.	List of acronyms	3
3.	List of terms	4
Table of Contents	5
4.	Introduction	6
4.1	Why Tethering?	6
4.2	What is tethering?	6
4.3	Renesas Mobile and Android	7
4.4	Renesas Mobile and Tethering	9
5.	Problem definition	10
6.	Reader’s manual	10
7.	Methodology, Establishment and Resources	11
7.1	Testing; Concepts of testing	11
7.2	Establishment	13
7.3	Resources	14
7.3.1	Software used	14
7.3.2	Hardware used	15
7.4	Summary	16
8.	The Investigation	16
8.1	Phase 1 – Involvement, preliminary analysis, first impression, first conclusion	16
8.1.1	Summary of Phase 1	18
8.2	Phase 2 – Reproducing the issue locally, further studies	19
8.2.1	RNDIS	19
8.2.2	Understanding the behaviour; reproducing in Copenhagen	21
8.2.3	Summary of Phase 2	25
8.3	Phase 3 – Technical experiments; different use cases	25
8.3.1	Summary of Phase 3	28
8.4	Phase 4 – fix for both use cases	28
9.	Evaluation	30
10.	Works Cited	31

[bookmark: _GoBack]	

[bookmark: _Toc345298497]Introduction

The original meaning of the word tether is [a rope or chain that an animal is tied to so that it can only move around within a limited area][footnoteRef:1]. Based on this the following user story can be told: [1: Longmann Dictionary of Contemporary English]

[bookmark: _Toc345298498]Why Tethering?

Let’s say that Jens Jensen is on a business trip, stuck in a train station, somewhere in China with no internet access. He is in desperate need to check his email address and change his Facebook status to something more attractive to his manager, but he only disposes of a laptop and his smartphone. The smartphone has a valid, good strength 3G signal and Data Roaming is activated.
Jens Jensen is looking puzzled at his laptop and smartphone, trying to figure out a method to connect his smartphone to his computer, but in the same time have his smartphone as a wireless device for his laptop.
He starts looking for the standard microUSB cable to connect his smartphone to his computer since it was also low on battery. After this he starts browsing the menus for some sort of a setting that will allow him to have his phone as wifi router for his smartphone. By mistake he goes into the scary network settings and founds the setting about tethering.
Jens Jensen quickly reads the description of the tethering service and soon finds out that just by enabling this option, he will be able to browse the internet on his laptop, based upon the data connection that his phone has with a cell using the 3G signal.
Then he can happily browse his e-mails and send his latest report to his manager and last but not least change his Facebook status: “Discovered Tethering. Thanks Google for making this possible!”

[bookmark: _Toc345298499]What is tethering?

Of course the basis for the engineering concept comes from the literal meaning of the English noun tether.
The meaning of the noun tether taken from the Oxford Dictionary states:
Tether: [A rope, chain, or similar restraint for holding one, especially an animal, in place, allowing a short radius in which one can move about].
If we take the basic English meaning and translate it to nowadays concept this only refers to the physical link between the 2 devices.
 A newer and more appropriate definition of the term would be:
Tether: [The extent or limit of one's resources, abilities, or endurance].
If we take this newer definition then we can very much refer to real world scenario presented in the above section, meaning that we are improving the Jens’ laptop with an extra feature. This extra resource is helping him to pursue his needs at that time, in a smart, easy and cheap way.
Now if we think of the real display of a tethered device it would look like:	
[image: http://9to5google.files.wordpress.com/2011/08/android_tethering2.jpeg?w=704]
Figure 1

[bookmark: _Toc345298500]Renesas Mobile and Android

The tethering concept is a feature that both iOS and Android have, but since Renesas Mobile is mainly focusing towards the Android market, the investigation was done in this area.
Android is an open-source mobile operating system. Since it is open-source a lot of people can actually commit changes to the master code line (MCL) branch. But in Google’s way to the top, they forgot to mention that Android is not plug-and-play, as a lot of people would think so. There is actually a lot of adaptation that the chipset manufacturer needs to do in order to have the Android OS running smoothly on their handsets. Adapting the whole Android system to a handset takes quite some time and fuss to get all the bits and pieces together. Since it has so many different components developed by different parties, one can easily lose track of what needs to be done.

Renesas Mobile decided that the Android Adaptation layer, RIL, and the Android layer to be named as APE.
[image:]
Figure 2

RIL ISI adaptation means that the RIL is converting Android’s radio requests to Renesas Mobile’s proprietary ISI transactions and it notifies Android of wireless unsolicited events.

Some of the adaptation features include:
· Generic C-Plane: Telephony driver for cellular protocol stack control
· Extensions of the C-Plane: security, thermal sensing, production testing and RF tuning
· Audio
· File System access
· Boot and system control

The Android telephony functionalities are partitioned using the schema shown in the following figure:

Figure 3

RIL stands for Radio Interface Layer. The Radio Interface Layer handles the Modem control interface. The RIL APIs are defined in the ril.h. The communication with the Java side is via socket.
The RIL libraries are split in 2 parts, a daemon, rild and a vendor library. The vendor library is dynamically loaded by the rild and abstracts the Modem vendor implementation.

[bookmark: _Toc345298501]Renesas Mobile and Tethering

So having a quick overview of the adaptation, let’s consider a more real world scenario.
Let’s consider a clean happy scenario where everything was adapted correctly for a new prototype based on a triple-modem chipset. The wake-up of the basic RF features of the handset happily ended with good results and then the wake-up of the more complicated features has to come. This more advanced wake-up includes scenarios for both the modem side and the APE side.
One of the most important features that most of the vendors are looking for is Tethering. As stated before the adaptation was made and wake-up commenced, but in the early wake-up phases there has been obseverd that Tethering simply takes too much time to be established. As stated in the Abstract section of this thesis, tethering is part of all the major operator certifications and if this doesn’t work as specified, the certification won’t be awarded, the company wouldn’t have the quality signs for its platform, hence this will translate into less customers which means a much lower profit.
This investigation focuses on understanding the tethering concept and its underlayers and in finding a way of improving the performance of the concept.

[bookmark: _Toc345298502]Problem definition

Companies are generally interested in getting more value out of their employees and the equipment they already have, whether it’s being improved via utilization, expanding the operation range or using (until now) unused features of their resources.
Finding bugs as early as possible is the key to producing successful products, as the longer bugs go unnoticed, the harder they potentially are to find and correct and the cost of finding the bugs can increase exponentially with time. Especially if resolving the bugs means that the ASIC needs to be changed. This is not the case here, but again if certain certifications wouldn’t be passed then this will have a major impact on the final product, both in terms of costs and quality.

Based on what has been previously presented the following questions could be raised:
· Is it possible to develop understanding areas within the concept?
· How could the Tethering establishment time be improved? What do we understand by the Tethering establishment time? Is there a standard that specifies this?
· How is this affecting internal and external testing of our platform?
· What is our platform behaviour compared to competitors?

[bookmark: _Toc345298503]Reader’s manual

There are a couple of conventions used in this thesis. The most notable conventions used are listed below:
· proto or Kota refers to the Android device
· APE refers to the RIL, Android and modem SW inside a prototype

[bookmark: _Toc345298504]Methodology, Establishment and Resources

This section gives a broad overview of the concept of testing, since only by testing errors can be found. Furthermore this section also gives an overview of the resources (software (SW) and hardware (HW)) used in this thesis.

[bookmark: _Toc345298505]Testing; Concepts of testing
Literary meaning of word “Testing” is the process of assessing the quality of something. Testing is an integral part of any research and development because quality of product is an important business parameter. Software testing is the process of validating and verifying that a software program/application/product fulfills the business and technical requirements that guided its design and development and it works as expected. Verification is the process of evaluating a system or component to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase. Validation is the process of evaluating a system or component during or at the end of the development process to determine whether it satisfies specified requirements. [1] (Azeem, Muhammad, 2009)

One might ask: “Why is testing necessary in the first place?”. This can be argued in many ways, but one of these ways would be that if the product is carefully planned and well designed, then in theory there should be no need for testing it – one should just expect the product to work. However, this is a purely theoretical and perfect view, but the world is not perfect and nor are humans, hence it is very human to make mistakes and this includes both SW and HW developers. Therefore, testing is an (or at least should be) integrated part of any product development process. If a product does not live up to the requirements or fails to work at all, it will have a hard time becoming a success, and return the investments made to develop it.

Depending on the size of the projects it will be harder or easier to spot errors. Taking into consideration the significant size of a mobile platform project, it will be almost impossible to find all errors, as it is impossible to explore all combinations of logical paths though the system. Hence, it is important to start testing early and not leave it to the last point on the agenda before the product is shipped off. By starting early and testing each component often and thoroughly can save a lot of time (and probably money) later in the development process.

“Testing can only show the presence of errors in a program. It cannot demonstrate that there are no remaining faults”. [2] (Sommerville, 2006)

This is indeed very important to have in mind while testing and designing tests. The general idea of testing is to find errors – not to prove that there are no errors. With the exception of “Release/ Acceptance testing”, which is described later in this section, testing is all about finding errors. It can be much more difficult to create test cases that prove that something is not working as specified compared to creating test cases that show that it works. This is one of the reasons testing can be considered an art. [3] (Johansen Lars, 2009)

There are a number of different concepts in regards to testing. The concepts that are the most interesting in relation to this investigation are described below.

	
	

	White box testing
	The internal structures and algorithms of the object under test are known when the test cases are being designed. This enables extensive testing, by testing all logical paths through the code. However, this is only doable for small objects, as the number of paths is usually proportional to the size of the object [2].
This is only used for testing individual components. For integration and system tests, one must make use of black bot testing.

	Black box testing
	The tester usually has no knowledge about the internal components of the system. Normally, all the tester is given is a description of the interfaces, an extended description of the expected behaviour and the description of what and how to test.
This means that this way of testing doesn’t necessarily guarantees (rarely cases) that all the internals parts of the object under test are evaluated.

Coming back to a mobile platform R&D project, there are individual developed components that will need individual testing before the final system is put together. This testing method is called “Component Testing”.
	
	

	Component testing
	The process of testing the individual components of the system, as they are being developed, before they are put together in the full large scale system. The purpose of these tests is finding and removing all the errors. The tests will be conducted as white box tests, since it is the only way of verifying that there no internal errors make it through to the integration tests

Every component is thoroughly tested, but they are tested as individuals. When put together these components might not fit together. The test of the whole system is consistent of already tested components and the whole process is defined as “System test”. Within system testing one can distinguish between “Integration testing” and “Release/Acceptance testing”.
	
	System testing

	Integration testing
	The first step of the system testing and often conducted as white box testing. This means that the way of the components interact with each other is tested.
As a rule of thumb it is advisable to gradually increase the number of components that are part of the integration testing. This is done because it’s hard to locate the root cause of an error when too many “new” components are added to the system at once.
Whenever a new component is added or updated, it will be beneficial to rerun a set or all the previous tests, to confirm that the updated component doesn’t break anything. Rerunning tests is referred to as “Regression testing” [2].

	Release / Acceptance testing
	Is performed after the integration testing to verify that the system is developed in accordance to the requirement specifications. This will be done as black box testing, in opposition to the above mentioned tests. The purpose of these tests is to prove that the system works as specified – and not to find errors.

The above tests will reveal the functionality of the system in a strong relation with the specifications or standards. But this is not enough, since often it is required to assess the performance of the system in a so-called “Performance testing”.
	
	

	Performance testing
	This is dependent of the size and the structure of the system. Based on these factors the testing load can be gradually increased until the performance becomes unsatisfactory or ultimately until the system breaks down [2].
If the system does break down, because of the load, then it should be tested that it does so in a graceful manner, and that it is possible to get the system up and running from where it crashed.

Here, however it is important to clarify that test and debug are quite often considered as one and same thing which is not true. The purpose of testing is to show that a program has errors while the purpose of debugging is to find the error or misconception that led to the program’s failure and to design and implement the program changes that correct the error. [4] (Beizer, 1990)

Based on the aforementioned analysis of the testing concepts, things come together to form the establishment of the whole investigation.

The investigation started after a number of Release tests and then Performance tests in regards to the tether component failed while in partnership laboratories pursuing product certifications. This meant that it was business critical since it was blocking some of the activities.

From a business perspective this means that the testing activities were suspended until this was fixed or a workaround and explanation were provided for the found issue.

From a testing perspective it meant that all the tests were passing in the internal labs, while Acceptance and Performance tests were failing in our partners’ labs. But the questions to be asked now are: “Was there any component testing done after the adaptation was finished? And if so, how much performance testing has been done on this component?”

[bookmark: _Toc345298506]Establishment

As aforementioned the establishment of the project is vaguely set to a period of intense testing, while pursuing product certification. This put the investigation in a whole new light and gave not just a research and “nice to have” sense, but a business critical new meaning.

One critical phase of the investigation was to provide an explanation and a workaround for the seen issues in testing. These seen issues were:
· Late IP assignment after enabling tethering (no reboot)
· Late IP assignment after reboot
The names of the issues are actually the internal naming. This was done to distinguish the two use cases that are drawn from the more generic issue reported by DoCoMo.

Both use cases are dependent on each other and are critical for the overall performance of the feature and of the platform.
After the workarounds and explanations were provided to the DoCoMo, the partner that was giving the certificate, and approved both of them, the investigation entered the next phase – integrating the workarounds in the APE MCL. A lot of study and thinking was put into these phase, since the workarounds were mainly in the sense of 2 .bat files, one for each issue.

The investigation ended when the under layers of the concept were understood, the root cause for the problem was found, a method of fixing the issue was provided and finally when the fix was committed to the adapted APE MCL.

A rough time frame of the investigation is presented in the picture below:
<to insert rough time frame of the investigation>

[bookmark: _Toc345298507]Resources

During the investigation several resources were used. These resources are both HW and SW.
The argument of not using an emulated instance of a device is that the conditions to reproduce the errors will not be the same.

[bookmark: _Toc345298508]Software used
The SW used in the investigation can be split into 3 sections as mentioned below:
Network specific:
· Wireshark
Wireshark is a free and open-source network protocol analyser. It is used for network troubleshooting, analysis, software and communications protocol development, and education.[footnoteRef:2] It was the main SW used for understanding the debugging and understanding the flow of the packets that are sent between the prototype and the computer. [2: Wireshark on Wikipedia: http://en.wikipedia.org/wiki/Wireshark]

· Network Monitor
Microsoft’s alternative to Wireshark, but capable of sniffing the packages that are sent over the USB link between the computer and the prototype.

General:
· Notepad++
Notepad++ is a free and open-source code and text editor that supports multiple programming languages. This was used to create the .bat files containing the workarounds for the 2 issues that DoCoMo reported.
Android specific:
· Android SDK
The Android SDK provides the API libraries and developer tools necessary to build, test, and debug apps for Android.
· SDK Manager
The Android SDK separates tools, platforms, and other components into packages downloadable using the SDK Manager.
· ADB
ADB stands for Android Debug Bridge. This is a very powerfull command line tool that helps to communicate with an Android emulated instance or an Android device. In this case the communication was done with an Android prototype. ADB is formed out of 3 components:
· a daemon that has to run on the emulated instance, or device, on a designated port.
· a client that runs on the development machine. This can be invoked by issuing a valid adb command in a shell.
· a server that runs as a background process. This ensures that the client can communicate with the daemon running on the emulated instance or device.
· logcat
The Android logging system provides a mechanism for collecting and viewing system debug output. Logs from various applications and portions of the system are collected in a series of circular buffers, which then can be viewed and filtered by the logcat command. You can use logcat from an ADB shell to view the log messages.[footnoteRef:3] [3: About logcat on Android: http://developer.android.com/tools/help/logcat.html]

· Android GB and ICS
Both distributions of Android were used to understand and compare the behaviour of the issues in different conditions.

[bookmark: _Toc345298509]Hardware used
· Various variants of Odin and EOS Kota prototypes
The prototypes are the main piece of HW used in this investigation. The prototypes are matching exactly the prototypes that were used in the DoCoMo labs, meaning that the conditions were fully reproduced locally.
<insert 1 picture of ODIN Kota and one picture of EOS Kota>
· Computer
There couldn’t have been any debugging and understanding, if there wasn’t a computer involved. The computer needed to smoothly process the Wireshark and Network Monitor logs, so a powerful PC was used.
· Stand-alone DHCP server
An Ubuntu box was configured with 2 Gigabit Ethernet cards as a DHCP server to simulate the behaviour of the Kota-PC connection, thus simulating the real conditions.

[bookmark: _Toc345298510]Summary
In this section there were presented several test methodologies. The establishment has also been set to a timeframe, which was dictated by the business critical issues in DoCoMo labs. Finally, the software and hardware used in the investigation were described.

[bookmark: _Toc345298511]The Investigation
[bookmark: _Toc345298512]Phase 1 – Involvement, preliminary analysis, first impression, first conclusion
As aforementioned in the Establishment sub-section, the investigation started when DoCoMo reported that Tethering is failing in their labs. The terms of failing were vaguely described as it takes too much time to establish the connection between the computer and the tethered device.
Of course the first thing that comes to one’s mind is: “OK, it takes too much time, but where is this specified?”. This too much time spent on establishing the connection was compared with our competitors’ handset.
But there is another question: “How is the “establishing the connection time measured”? Meaning is it the time, since the used presses the Tether on the device, until the PC gets an IP address? Or is the time since the used pressed Tether on the device, until the user can actually browse the internet on their PC?”
The answers to these questions are very much arguable because, first of all, there is no spec that says that the establishment time should be x seconds, secondly, there are different views in measuring the actual end of the establishment.

To start with, DoCoMo reported only one issue – the tethering establishment time is too long, but as it will be described later on in this thesis, the issue can and must actually be split into 2 separate use cases.
Thanks to our colleagues from Musashi, I got some more information in regards to the conditions were this issue was found and had a good starting point.
The first batch of materials, were a logcat log, a brief explanation and a brief description of the testing conditions.
Here is an extract from the mail received from our colleagues from Musashi:
06-27 13:39:43.914 D/TetherController(1155): Starting tethering services
06-27 13:40:45.132 I/dnsmasq (1563): DHCPDISCOVER(rndis0) 192.168.42.113 c2:10:89:e7:fd:17
06-27 13:40:45.132 I/dnsmasq (1563): DHCPOFFER(rndis0) 192.168.42.113 c2:10:89:e7:fd:17
06-27 13:40:45.132 I/dnsmasq (1563): DHCPREQUEST(rndis0) 192.168.42.113 c2:10:89:e7:fd:17
06-27 13:40:45.132 I/dnsmasq (1563): DHCPACK(rndis0) 192.168.42.113 c2:10:89:e7:fd:17 32-38828
06-27 13:40:45.132 I/dnsmasq (1563): DHCPACK(rndis0) 192.168.42.113 c2:10:89:e7:fd:17 32-38828
06-27 13:40:50.164 I/dnsmasq (1563): DHCPINFORM(rndis0) 192.168.42.113 c2:10:89:e7:fd:17
06-27 13:40:50.164 I/dnsmasq (1563): DHCPACK(rndis0) 192.168.42.113 c2:10:89:e7:fd:17 32-38828

Test Environment
HW : KOTA 5.1 HWID22
Modem : MB12A_12w24_4 os_ko_hh_wge_dc
ICS(Android v4.0.3) / Odin-WW_PLATFORM_SUPPORT_12w25_2_2

Please note that other parts of this mail were left out, due to confidentiality policies.
The first part of the above section shows a logcat log that explains the “establishing connection taking too much time”.
In order to take the log the following command was used:
adb logcat -v time -b radio -b events -b main >logcat_trace.txt

Now to get more insight of this, let’s analyse the first line of the log:
06-27 13:39:43.914 D/TetherController(1155): Starting tethering services
Dividing this we are getting the following information:
	logcat analysis

	06-27
	The date when the log was taken. Though this date is the date of the device from where the log was taken and since we are talking about R&D this date can be the same in multiple situations.

	13:39:43.914
	Timestamp. This is showing that time where the actual action happened. The same remark mentioned above, regarding R&D is still in place.

	D/TetherController(1155):
	Shows the class where the code is actually found. 1155 shows the line where the first line of code of the action.

	Starting tethering services
	This is the action that is executed at line 1155 from the TetherController class.

This preliminary analysis helped in identifying the forming elements of a logcat log. Later on this will prove of use because it helps understanding the structure of the classes that have an impact with Tethering.
Based upon the timestamps from the log we can see that the start point of the establishment was at 13:39:43.914 and the endpoint was at 13:40:50.164.
Below the start point and the end point lines from the logcat were extracted:
06-27 13:39:43.914 D/TetherController(1155): Starting tethering services
06-27 13:40:50.164 I/dnsmasq (1563): DHCPACK(rndis0) 192.168.42.113 c2:10:89:e7:fd:17 32-38828

Making a rough calculation the time difference between the start point and the end point is around 1 minute and 07 seconds. This is the time that DoCoMo reported being too long.
Now these 2 lines also provide a better understanding of what is considered to be a start point and an end point. The start point in this case will be the time when the user presses “Tether” on their device, while the end point will be whenever the PC connected to the device is being assigned an IP address and is sending an ACK back to the server.
The word server was used. The question is: “Is this a client-server architecture?”. As a matter of fact it is. The mobile device acts as a server, while the PC plays the role of the client.
The logcat log also reveals some of the under layers of the Tethering application – the DHCP dialogue and RNDIS.
Both of these under layers were studied thoroughly in the next phases of the investigation.

[bookmark: _Toc345298513]Summary of Phase 1

The first contact with logcat and the issue was pretty out of the box, meaning that there has been some studies in regards to logcat and the conditions in order to fully understand the initial behaviour.
Finally, the first conclusion in regards to the establishment time was: how is RNDIS affecting the DHCP dialogue between the proto and the PC?

[bookmark: _Toc345298514]Phase 2 – Reproducing the issue locally, further studies

Of course the materials got from DoCoMo and our colleagues from Musashi weren’t much to go on and fully study the issue and to provide a workaround for the issue. So the issue had to be reproduced locally in order to get the full understanding.

The quickest way of doing this was to take a prototype that matches exactly the one that was used in DoCoMo and flash the same APE and modem SW.

The whole bench setup in order to reproduce the conditions took quite some time, first of all, because the Copenhagen office only had one Kota board of that type, so if anything would have happened with that proto, the whole investigation would have been stalled for quite some time, secondly all the SW needed to be installed and configured to work with the Renesas prototypes.

After the setup was complete and the prototype was all set to match DoCoMo’s conditions, reproducing the issue started. This was very important because the logs received were simply not enough to work on with.

In the same time, colleagues from our UK office made their own setup to support whatever I needed in CPH, thus speeding up the investigation.

So testing and studying the under layers of Tethering started.

Tethering makes use of RNDIS, so the first studies started with understanding RNDIS and what this does. This is also because the conclusion from the previous phase was related to this.

[bookmark: _Toc345298515]RNDIS
Remote NDIS (RNDIS) is a bus-independent class specification for Ethernet (802.3) network devices on dynamic Plug and Play (PnP) buses such as USB, 1394, Bluetooth, and InfiniBand. Remote NDIS defines a bus-independent message protocol between a host computer and a Remote NDIS device over abstract control and data channels. Remote NDIS is precise enough to allow vendor-independent class driver support for Remote NDIS devices on the host computer. (Microsoft, 2012)
RNDIS stands for Remote NDIS and it’s Microsoft’s way of specification for network devices on dynamic Plug & Play I/O buses such as USB.
Now one would think: “What is NDIS?”. NDIS is part of the network architecture in Microsoft Windows operating system.

Remote NDIS (RNDIS) eliminates the need for hardware vendors to write an NDIS miniport device driver for a network device attached to the USB bus. Remote NDIS accomplishes this by defining a bus-independent message set and a description of how this message set operates over the USB bus. Because this Remote NDIS interface is standardized, one set of host drivers can support any number of networking devices attached to the USB bus. This significantly reduces the development burden on device manufacturers, improves the overall stability of the system because no new drivers are required, and improves the end-user experience because there are no drivers to install to support a new USB bus-connected network device. Currently Microsoft Windows provides support for Remote NDIS over USB.

[image: Diagram illustrating the architecture of remote NDIS]
Figure 4
Figure 4 shows the replacement of the device manufacturer's NDIS miniport with the combination of a Remote NDIS miniport driver and a USB transport driver. The device manufacturer can therefore concentrate on device implementation and not have to develop a Windows NDIS device driver.

Remote NDIS messages are mirroring the semantics of the NDIS miniport driver interface. The list of messages includes:
· Initializing, resetting and halting the operation of a device
· Transmuting and receiving networking data packets
· Setting and querying device operational parameters
· Indicating media link status and monitoring the status of the device

Microsoft also provides a USB bus transport driver that implements a mechanism for carrying the Remote NDIS messages across the USB bus. This driver transports standardized Remote NDIS messages between the Remote NDIS miniport driver and the bus-specific driver, such as USB. The bus-specific drivers are also required to map any bus-specific requirements, such as power management, into standardized Remote NDIS messages.

This structure allows a single device driver to be used for any Remote NDIS device for which there is a bus-specific transport layer. In addition, only one bus transport layer is required for all network devices on a specific bus.

This also means that any IHV (Independent Hardware Vendor) must create an INF file to match its devices. If there are no optimizations done in the INF file, then the only thing that needs to be done is to add the VID (vendorID) and the PID (productID) of the device to the default RNDIS driver provided by Microsoft.

To wrap up things about RNDIS:
· What it does? It emulates a network card on the client side.
· Since it emulates a network card, this actually means that every time it emulates one the physical address of the card is different. This is something that is very confusing, especially in log analysis.
· The vendor must provide a .INF file to inform RNDIS drivers shipped with windows of any unique properties of their device.

[bookmark: _Toc345298516]Understanding the behaviour; reproducing in Copenhagen
After studying the RNDIS component, new logs needed to be taken. I started with Wireshark logs, since the whole DHCP dialogue can be seen.
But getting a Wireshark log is quite tricky because of RNDIS. As mentioned in the previous section RNDIS emulates a new network card every time tethering is initialized. Having a new Ethernet card every time means that the physical address of the card changes. This is one part of the problem. The other one is that every time some of the very first packets are lost. This is happening because of the emulated Ethernet card. Being the fact that is emulated, Wireshark can only see it as a capture device only after it has been initialized and starting the capture takes some time, even if you are prepared to do it as quick as possible. Unfortunately there is no support for having a quick capture shortcut combination.
I got support from our colleagues in the UK and got 3 logs from them in. They have tested this with the same prototype, same modem SW, but different APE SW packages, taken in both Windows and Linux, so I got:
· One log from an ODIN K5.1 proto with GB, under Windows
· One log from an ODIN K5.1 proto with ICS, under Windows
· One log from an ODIN K5.1 proto with ICS, under Ubuntu.

An analysis of the logs showed that under Linux the establishment time is always “fast”, in a matter of seconds, while under Windows it takes around 1 minute and 4 seconds.

One important finding is that, this 1 minute and 4 seconds is there, no matter the APE SW used, nor the type of prototype used, since this was trialled also on EOS prototypes and the behaviour was exactly the same.

I took 3 logs and I was more confused, because the analysis of the logs was later then when the logs were taken, so unfortunately new logs were needed. I dumped those logs and started again taking a log with Wireshark. In the same time Windows Network monitor was also trialed, but this ended up being a dead end, because logging couldn’t been started from the time Tethering was pressed on the U.E.

Nothing new so far, but I actually understood the behaviour of the client and the server and the point there, is that both are incredibly “stubborn”. In a nutshell the situation stands:
· Windows is asking “the world” for a temporary IP address, let’s say 169.254.253.206. In most of the cases this was already assigned sometime in the past and it finally gets this IP.
· Then there are a couple DHCP Requests where Windows is trying to get an IP address let’s say 192.168.42.172. So Windows is asking the Kota: “Oy… I want 192.168.42.172”
· The DHCP request is sent a couple of more times (3 or 4 times) which is acceptable, but “no one” responds to this.
· Then Windows asks to see if “someone” uses 192.168.42.129 (which will later be the gateway)
· Kota sends the response saying that it has this IP.
· Then there is *FINALLY* the DHCP Discover where windows asks for an IP address, more precisely it asks for 192.168.42.172.
· Then Kota asks “the world” of couple of times (3 times) if “someone” uses this 192.168.42.94. Receives no response, so no, this is not used…
· Then there is a DHCP Offer from Kota, saying something like “no can do for 192.168.42.172, but here’s 192.168.42.94”. Look at the previous step!!!!
· Then there is another precisely the same sequence of DHCP Discover and Offer with the same result.
· Then Kota asks again for 192.168.42.94. No response…
· Then we have the “good” DHCP Discover, where Windows again is asking for 192.128.42.172.
· Kota responds with DHCP Offer – no 192.168.42.172, but 192.168.42.94 is available
· Then finally Windows “gives up” and asks for 192.168.42.94 and Kota responds with ACK.
Explanation 1
This explains the stubborn behaviour of both the Windows and the Kota.

The previous explanation is what happens between the client (the PC) and the server (the proto) and shows the DHCP dialogue between them, but in order to fully understand this the documentation for both DHCP and ARP needed to be studied. For this matter RFC 2131 and RFC 826 were consulted and studied.

RFC 2131 – DHCP
The DHCP was first defined by RFC 1541, but was later on superseded by RFC 2131. The DHCP allows a server to distribute IP addresses and configuration information in a dynamic way to clients. Normally the DHCP server provides the client with the following information:
· IP address
· Subnet Mask
· Default Gateway
There are other information that the DHCP can pass on to clients, such as DNS or WINS. Having more or less information is decided by the system administrator, but for this case the default information was provided to the client.

So when a client is firstly initialized it is configured to receive information from the DHCP, hence initiating a client-server conversation.

Based upon the RFC 2131 the following table can be sketched:
 Source Dest Source Dest Packet
 MAC addr MAC addr IP addr IP addr Description

 Client Broadcast 0.0.0.0 255.255.255.255 DHCP Discover
 DHCPsrvr Broadcast DHCPsrvr 255.255.255.255 DHCP Offer
 Client Broadcast 0.0.0.0 255.255.255.255 DHCP Request
 DHCPsrvr Broadcast DHCPsrvr 255.255.255.255 DHCP ACK
[image: DHCP Lease Process Overview]
Figure 5
Figure 5[footnoteRef:4] shows the ideal conversation between a client and a server. The same conversation should be done by the prototype and the PC. [4: http://technet.microsoft.com/en-us/library/cc780760(v=ws.10).aspx#w2k3tr_dhcp_how_rnmn]

		Server Client Server
 (not selected) (selected)

 v v v
 | | |
 | Begins initialization |
 | | |
 | _____________/|____________ |
 |/DHCPDISCOVER | DHCPDISCOVER \|
 | | |
 Determines | Determines
 configuration | configuration
 | | |
 |\ | ____________/ |
 | ________ | /DHCPOFFER |
 | DHCPOFFER\ |/ |
 | \ | |
 | Collects replies |
 | \| |
 | Selects configuration |
 | | |
 | _____________/|____________ |
 |/ DHCPREQUEST | DHCPREQUEST\ |
 | | |
 | | Commits configuration
 | | |
 | | _____________/|
 | |/ DHCPACK |
 | | |
 | Initialization complete |
 | | |
 . . .
 . . .
 | | |
 | Graceful shutdown |
 | | |
 | |\ ____________ |
 | | DHCPRELEASE \|
 | | |
 | | Discards lease
 | | |
 v v v
Timeline diagram of messages exchanged between DHCP client and servers when allocating a new network address (Droms, 1997)

<do I need to explain the DHCPDiscover, OFFER, REQUEST And ACK, based on my log?????>

RFC 826 – ARP
This was also one of the things studied to fully understand the behaviour and the flow of things.

The Address Resolution Protocol is a request and reply protocol that runs encapsulated by the line protocol. It is communicated within the boundaries of a single network, never routed across internetwork nodes. This property places ARP into the Link Layer of the Internet Protocol Suite, while in the Open Systems Interconnection (OSI) model, it is often described as residing between Layers 2 and 3, being encapsulated by Layer 2 protocols. [footnoteRef:5] [5: http://en.wikipedia.org/wiki/Address_Resolution_Protocol]

As shown in the Explanation 1, there are several ARP packages that are sent. ARP was initially designed for Intel/Xerox 10Mbit Ethernet. Years after it was generalized to be used by other type of networks as well.

As a packet is sent down through the network layers, routing determines the protocol address of the next hop for the packet and on which piece of hardware it expects to find the station with the immediate target protocol address. In the case of the 10Mbit Ethernet, address resolution is needed and some lower layer (probably the hardware driver) must consult the Address Resolution module (perhaps implemented in the Ethernet support module) to convert the <protocol type, target protocol address> pair to a 48.bit Ethernet address. The Address Resolution module tries to find this pair in a table. If it finds the pair, it gives the corresponding 48.bit Ethernet address back to the caller (hardware driver) which then transmits the packet. If it does not, it probably informs the caller that it is throwing the packet away (on the assumption the packet will be retransmitted by a higher network layer) (Plummer, 1982)

What surprised me after reading the RFC documentation is that they are a fantastic source of information. These are one of the few documentations, that are actually readable and in the same time understandable.

So returning to the analysis, I took a second Wireshark log and saw the same behaviour, but what confused me was that the physical addresses of the virtual Ethernet cards were changed as I was used to the previous ones. This is actually one of the reasons I dumped the previous logs.

The investigation continued as I ran a couple of “ipconfig /all” while enabling and disabling tethering, then it struck me.

“What if I do an ipconfig /release?” I did that, disabled tethering, waited for 2 seconds, enabled it back and… surprise, surprise I got an IP in 7 seconds (or even faster than this). I was surprised and then ran the same thing again and again a couple of times and ~7 seconds was the constant time there.

Then enabled and disabled tethering a couple of times and used only “ipconfig” to see the behaviour and the IMPORTANT part is the lease time, which is deleted when the release is done. If the lease cache is clean (so release is done every time), the IP is given in 7 seconds.
This is actually the workaround- releasing the IP every time, thus deleting the lease.

I went further than this to try to explain more and took a third Wireshark log releasing the IP before and I could see that getting the IP was done almost instantly. I looked deeper and saw that the physical addresses were again changed, so I concluded that every time, RNDIS changed the physical addresses of both virtual Ethernet cards. Doing this we should have new IP addresses every time, *BUT* the lease is not flushed, so this is the catch.

All the actions detailed above were done with IPv6 disabled, but even if IPv6 is enabled, if releasing is done, still take 7 seconds.

[bookmark: _Toc345298517]Summary of Phase 2
Within this phase the studies went further on – DHCP and ARP were thoroughly studied and the connection to the OSI model was done. Furthermore both an explanation and a workaround were provided for the issue, but this doesn’t mean that the investigation is over.
There is though several questions that need answers: where is the bug??? In the Windows side? In the APE side?? In both??

The conclusion of this phase is that there is a bug in both sides – APE and Windows.

[bookmark: _Toc345298518]Phase 3 – Technical experiments; different use cases
Phase 3 commences with a few technical experiments. During these experiments, the investigation takes a weird turn around, because I soon realised that the slow establishment time was part only of one use case. There are actually 2 use cases for this very generic described issue:
· Late IP assignment after enabling tethering (no reboot)
· Late IP assignment after reboot

The technical experiments consist of very short real end user stories.

 Key:
 T = Enable Tether
 U = Disable Tether
 <RST> = reset the UE via <RST> key
/release = ipconfig /release
 L = ~ 1 min 6 sec to establish NW
 S = ~ 7 sec to establish NW

 (L) (S) (S)
1. Boot GB --> T --> U --> T --> U --> T --> <RST>
[PD] This is consistent: re-tethering always fast

 (L)
2. Boot GB --> T --> U <RST>

 (L)
3. Boot GB --> T --> /release --> U --> <RST>

 (L)
4. Boot GB --> T --> /release --> U --> <RST>
… experiment 2, 3 & 4, for me, conclude that GB always takes a long time after re-boot;
No matter how I try to close down the connection.

 (L) (L) (L)
5. Boot ICS --> T --> U --> T --> U --> T
… even /release form GB tether, ICS then takes a long time to tether

 (L) (S)
6. Boot ICS --> T --> /release --> U --> T --> /release --> U --> <RST>
… previous conclusion and this is consistent; if we release between re-tethering, always fast.

 (L)
7. Boot ICS --> T
[PD] but, first time tethering after re-boot, GB or ICS, but takes a long time.
… even after a release & un-tether from previous boot.

Based upon the understanding got from the experiments described above, I made an assumption:

 (L) (?)-should be S (?)*
Boot ICS --> T --> /release --> U --> T --> /release --> U --> T <RST>
*should be S.

The assumption was indeed true, which meant that establishment time was ~7 seconds, but the “reboot issue” was something new.

So this phase focuses on the “reboot issue”.

Again quite a lot of experiments and a huge number of logs were taken to try to understand the behaviour of this new issue, but this was something as stubborn as the previous DHCP dialogue.

The investigation took odd routes in this phase. Reboots of both proto and PC were done, IP releases, etc. Here is a piece of a conversation between myself and a colleague from the UK.

“I also rebooted both the PC and the Kota, which means that there was no ARP cache and the lease time was flushed and I got the same behaviour which is indeed strange. Next thought that came to my mind is that the DHCP server from Kota needs some time to “settle” after the proto is rebooted. This theory was ruined by the fact that I waited for 5 minutes and enabled tethering and got the same “stubborn” behaviour.”

But again, this was not an explanation, nor a workaround, so again new logs were needed. New logs have shown a somehow different behaviour than the one presented in Phase 2.

Within Phase 2 I’ve detailed the “conversation” happening between Windows and Kota. I am going to detail it again but in a different way now(packet names will be present):
1. Windows asks for a temporary IP address
3 x ARP packets --> temporary IP address: 169.xxx.xxx.xxx
1. Windows asks for a “real” IP address:
3 x DHCP Requests --> 192.168.42.xxx
1. Windows asks who is the router:
ARP packet for 192.168.42.129 à How does Windows knows this if a reboot was done? How is this stored?
1. Windows asks for an IP address:
DHCP Discover …
1. Kota asks for an available IP address (that will be assigned to Windows later on)
3 x ARP …
1. Kota Responds to the Discover packet
DHCP Offer …
1. Another group of DHCP Discover + DHCP Offer
1. Kota again asks for an available IP
ARP packet for an available IP
1. DHCP Discover DHCP Offer à DHCP Request à DHCP ACK
1. Windows asks again for the router
ARP packet for 192.168.42.129
		
If we trigger a ping on 192.168.42.129 *after* step 3, then Windows gets the IP address automatically. This means that the ARP is somehow filled up with something. But the whole triggering is tedious to do, because there is no precise time for the ARP packet that requests the router address. Of course based on a couple of logs we could approximate this time, but I don’t know if this is the way to go.

But the scenario here is that the proto is rebooted, but what if the PC is rebooted as well? That router IP address is somehow stored in the ARP cache, so if we restart the machine, the ARP cache will be flushed. I restarted both the machine and the proto and the attach was in ~7 seconds, thus proving that the router’s IP is stored in the ARP cache.

But we cannot and shouldn’t restart our machines every time, so we need to flush the ARP. The work around for this is simple: open a CMD with administrator rights (Start -> type cmd -> right click -> Open with administrator rights) and then use “arp –a” to check the available cache (a list of IP and physical addresses should be displayed) and then flush the cache with “arp –d”. After the cache is deleted, we still need to release the IP, so the next step is “ipconfig /release”, then disable tether or power cycle the proto. It should now take ~7 seconds for Windows to get an IP address from the proto

The other point here is that sometimes, after both PC and proto were rebooted, Windows only sends a DHCP Inform packet and then Kota responds with a DHCP ACK. So the whole Discover – Offer – Request – ACK is left off.

Based on the 10 step sequence from above, I speculated that this is happening, because the proto hasn’t got any real information (no uplink, no downlink) from either a tester or a real network and that the ARP packet is sent to figure out if there is an established connection, again with a tester or a real network. The test here would be of course using the callbox from a CMW500, or by actually putting a SIM card in one of the boards and see how that goes (and it would be really handy to test both 3G and LTE networks. Based on what we have seen so far, I wouldn’t be surprised if the behaviour would be different.)

In the situation when both the machine and the proto were rebooted, taking the log didn’t actually show the first packets that were sent back and forth, because it was simply too fast.

[bookmark: _Toc345298519]Summary of Phase 3
During this phase, a deeper analysis of the DHCP client-server conversation was done. Based on the technical experiments there were shown 2 use cases of the same issue, with the same impact. Furthermore an explanation and a workaround were provided for this second use case as well.

But again the question, where is the bug? Is it only in the RNDIS connector from the APE side? Could it be that there is a bug in the tethering class? Is it in the Windows side? Is it in both?

[bookmark: _Toc345298520]Phase 4 – fix for both use cases
The found workarounds are just temporary fixes that should not and cannot be committed into the APE MCL. The workarounds were delivered to DoCoMo as bat files, but these couldn’t be included in the final APE implementation.
Main symptoms
Looking at a logcat from a connection attempt we can see:
06-27 13:39:43.914 D/TetherController(1155): Starting tethering services
06-27 13:40:45.132 I/dnsmasq (1563): DHCPDISCOVER(rndis0) 192.168.42.113 c2:10:89:e7:fd:17
06-27 13:40:45.132 I/dnsmasq (1563): DHCPOFFER(rndis0) 192.168.42.113 c2:10:89:e7:fd:17
06-27 13:40:45.132 I/dnsmasq (1563): DHCPREQUEST(rndis0) 192.168.42.113 c2:10:89:e7:fd:17
06-27 13:40:45.132 I/dnsmasq (1563): DHCPACK(rndis0) 192.168.42.113 c2:10:89:e7:fd:17 32-38828
06-27 13:40:45.132 I/dnsmasq (1563): DHCPACK(rndis0) 192.168.42.113 c2:10:89:e7:fd:17 32-38828
06-27 13:40:50.164 I/dnsmasq (1563): DHCPINFORM(rndis0) 192.168.42.113 c2:10:89:e7:fd:17
06-27 13:40:50.164 I/dnsmasq (1563): DHCPACK(rndis0) 192.168.42.113 c2:10:89:e7:fd:17 32-38828
We can see that there is at least 1 minute from when the tethering starts until dnsmasq indicates that a DHCPDISCOVER message has been handled.
If a Wireshark capture is made at the same time it can be seen that immediately after the tethering has been re-started then the windows PC starts to send DHCPREQUEST packets with the previous connections data. Assorted time outs are causing re-transmission until eventually the PC sends a DHCPDISCOVER request (which can be seen above).
Problem Analysis
Instance of RNDIS driver on PC is created when tethering is enabled, it is disabled (and invisible) when tethering is disabled. The IP connection over RNDIS is using DHCP for getting a IPv4 ethernet address.
　
When re-tethering, it seems that the DHCPREQUEST messages are being ignored (or not routed) to the DHCP server within Android.
Packet path from PC to DHCP server is:
User->network -> NDIS -> RNDIS -> USB transport -> Android USB -> RNDIS server -> iptables -> dnsmasq
Tethering on Android is controlled from the UI. ENable/disable tethering is routed through:
Tethering (java) -> TetherController (C - Android glue) -> dnsmasq (C - DHCP / DNS server from internet)
Deeper Analysis
TetherController creates a new instance of dnsmasq whenever tethering is started. When tethering is stopped this instance is destroyed by TetherController.
Therefore no dynamic information is kept between one tether and the next due to this destruction.
The initial DHCPDISCOVER / OFFER / REQUEST / ACK has informed the PC that it has a least for an hour.
Therefore when the tethered connection re-appears, the Windows PC attempts to validate the DHCP lease obtained previously using a DHCPREQUEST message containing this lease information.
Dnsmasq has no information about this lease, and (correctly according to the RFC) ignores this DHCPREQEUST message. Re-transmissions after timeouts eventually cause windows to decide that the lease is no longer valid and then after a minute a DHCPDISCOVER message is sent.
A quick work around for this issue was to type "ipconfig /release" as a windows command prompt which causes the lease information to be removed, also the windows ARP cache should be flushed.
Looking at the code & documentation of dnsmasq, there seems to be a flag OPT_AUTHORITATIVE which can be set with the --dhcp-authoritative command line flag. This is documented as follows:
(IPv4 only) Should be set when dnsmasq is definitely the only DHCP server on a network. It changes the behaviour from strict RFC compliance so that DHCP requests on unknown leases from unknown hosts are not ignored. This allows new hosts to get a lease without a tedious timeout under all circumstances. It also allows dnsmasq to rebuild its lease database without each client needing to reacquire a lease, if the database is lost.
This seems to be the case here.
Bug solution
The --dhcp-authoritative command line flag should be used when starting dnsmasq. This could be done by adding this flag into TetherController.c or by adding an extra configuration file.
The configuration file used for testing this fix was /etc/dnsmasq.conf
This file contained the text: dhcp-authoritative
(note NO -- before the argument)
When /etc/dnsmasq,conf was included, then re-tether time was ~7 seconds.
Follow up
This fix needs to be applied to our Android release package.

[bookmark: _Toc345298521]Evaluation

Works Cited
Azeem, Muhammad. (2009). EUTRAN L1 CPH Testing Analysis.
Beizer, B. (1990). Software Testing Techniques.
Droms, R. (1997, March). Dynamic Host Configuration Protocol. Internet.
Johansen Lars. (2009). Optimized Utilization of Testing and Verification.
Microsoft. (2012). Remote NDIS (RNDIS) (Windows Drivers). Retrieved from http://msdn.microsoft.com/en-us/library/windows/hardware/ff570660(v=vs.85).aspx
Plummer, D. C. (1982, November). An Ethernet Address Resolution Protocol.
Sommerville, I. (2006). Software Engineering. In Software Engineering, 8th Edition (pp. 537 - 565). Addison-Wesley Publishers Limited.

		5 (31)

image2.png

image3.emf
MODEM

Modem

Linux kernel

Libraries

(user space)

rild

Vendor ril

Application&

Framework

Phone

Service TrackerCall TrackerData TrackerSMS Dispatcher

RIL

STKPhoneApp

SettingsContacts

SDK Applications

control

ril.h

SDK API

oleObject1.bin
MODEM

Modem

Linux kernel

Libraries
(user space)

rild

Vendor ril

Application &
Framework

Phone

Service Tracker

Call Tracker

Data Tracker

SMS Dispatcher

RIL

STK

PhoneApp

Settings

Contacts

SDK Applications

control

ril.h

SDK API

image4.png

image5.gif

image1.jpeg

image6.jpeg

